

Y-12 CAPABILITIES AND EXPERTISE RELATED TO MO-99

Lloyd Jollay

lloyd.jollay@cns.doe.gov

Director of Nuclear Material Applications

UNCLASSIFIED

This document has been reviewed by a Y-12 DC/UCNI-RO and has been determined to be UNCLASSIFIED and contains no UCNI. This review does not constitute clearance for public release.

Name:

Date:

DISCLAIMER

This work of authorship and those incorporated herein were prepared by Consolidated Nuclear Security, LLC (CNS) as accounts of work sponsored by an agency of the United States Government under Contract DE-NA-0001942. Neither the United States Government nor any agency thereof, nor CNS, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility to any non-governmental recipient hereof for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or contractor thereof, or by CNS. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or contractor (other than the authors) thereof.

The Y-12 National Security Complex

The Y-12 National Security Complex

Located in Oak Ridge, Tennessee

Operating production facility specializing in uranium material safeguards, technologies, and manufacturing:

- Operational U-Metal Production and Technology Development Facilities
- Uranium Metallurgical and Manufacturing Expertise
- On-Site Source Material Availability

Since FY06, Y-12 has been integrated in fuel development activities supporting the RERTR Program goals.

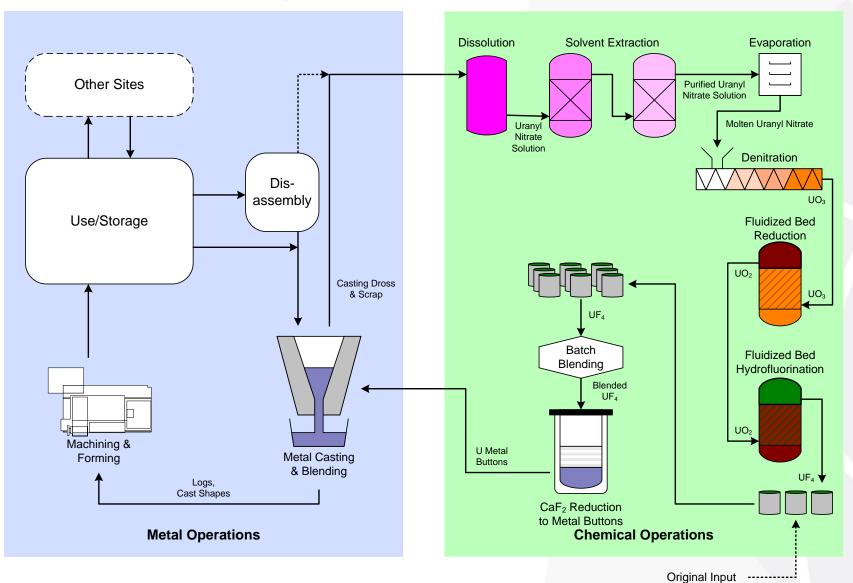
This presentation will focus on the capabilities that might be of interest to the Mo⁹⁹ community

- Capability
- Equipment
- Processes

Areas of responsibility related to minimization of the use of HEU

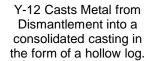
Support directly the Materials Management and Minimization (M3) Goals

- Remove, eliminate, and minimize the use of proliferation-sensitive materials
 - Nuclear Material Removal
 - Conversion
 - Material Disposition
- Core uranium capabilities for Y-12:
 - Processing
 - Handling
 - Storing
 - Packaging
 - Shipping
- Collaborate with the World to meet these objectives


Supply Material for Research Reactors

Supplier of 19.75% Enriched Material

- Down-blended from HEU stocks
- Currently not available commercially in the US
- Necessary for current and future conversion

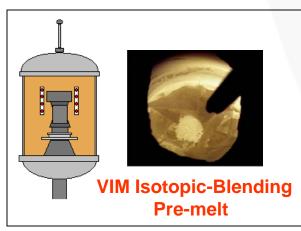

Uranium Processing at Y-12 - Simplified

Vacuum Induction Melt Furnace

Low Enriched Uranium Work Flow

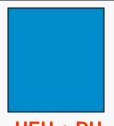
The hollow logs are broken, sheared, and pickled in accordance to the NR requirements

The broken metal pieces are then canned and drummed into an ES-3100



Mold Preparation

- Procure mold components
- Procure erbium oxide paint
- •Roller-mix paint
- Check viscosity
- Coat mold components
- •Clean spray gun
- Assemble hollow cylinder stack



Casting

- Verification weigh/re-weigh
- •Load induction furnace
- •Heat, hold, cast, and cool.
- Unload furnace
- Line-cool

HEU + DU

Batch Make-up

- •Acquire HEU and DU for isotopic blend
- •Break charge uranium as necessary
- •Place material in hospital pan
- Create (weigh) batch



From Casting

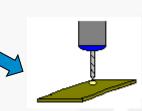
Ship oxide off-site

Crucible with Skull Oxide

Graphite Handling

- Sweep/can oxide
- Remove coating from unbroken mold stack components using a rotary wire-brush
- Evaluate condition of unbroken components
- •Break unusable graphite
- •Place broken graphite in "carbon can"
- Move reusable components to coating (mold-prep) area
- •Burn skull, sweep, and can

Ship broken carbon off-site


Hollow Cylinder/Log/161

Knockout

- •Remove crucible
- •Remove skull oxide from crucible
- Place skull metal and pallet scrap in hospital pan
- Disassemble rest of mold stack
- Remove cast log from housing
- Break/gouge/cut out mold core
- Rotary-brush log
- Apply oil to log
- Weigh log
- Verify Enrichment using multi-channel analyzer
- Drill chemistry samples

Reusable graphite to Mold Preparation

Samples to Plant Lab

Chips for Chemical Analysis

Break/Shear

- Break using hydraulic press
- •Shear to smaller piece size using alligator shear
- •Place metal in hospital pan
- •Weigh broken/sheared batch

Product from Knock Out



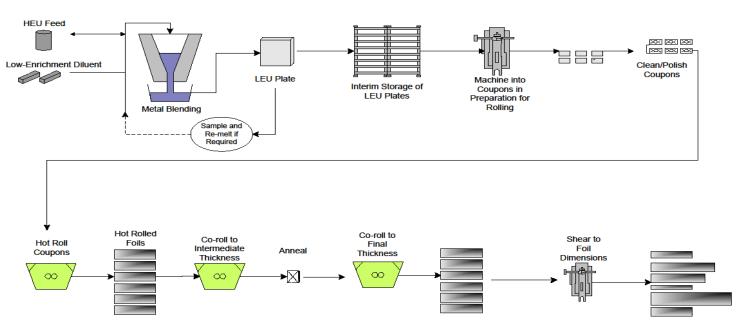
The original baseline process combined DU/NU, and HEU to make a LEU Cast

- At this point, sampling occurs to examine U-235 enrichment, and impurities
- If material meets criteria, material is broken
- Recast into a plate form or shipped for other use

Thin Cast Plates (MWV)

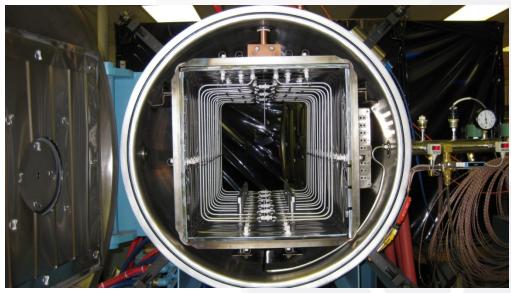
Oxide Production

- Currently produce high fired ceramic grade U₃O₈ for High Flux Isotope Reactor (HFIR) for ORNL and NBSR
- Produced UO₂ for Slowpoke Reactor Conversion (Jamaica)


HFIR Fuel Element

Rolling and Forming of the U-Mo Foil Process

Foil Production Flowsheet


LABORATORY SCALE FABRICATION PROCESS

LEU-Foil Target Development & Manufacturing

Rolling Mill



Heat Treatment Furnace Development

Rolled foils (Bare)

112 µm thick foil

Target as Manufactured

Rolling Target Foil Lessons Learned

Target foil thickness is difficult to manufacture

• < 150 μm

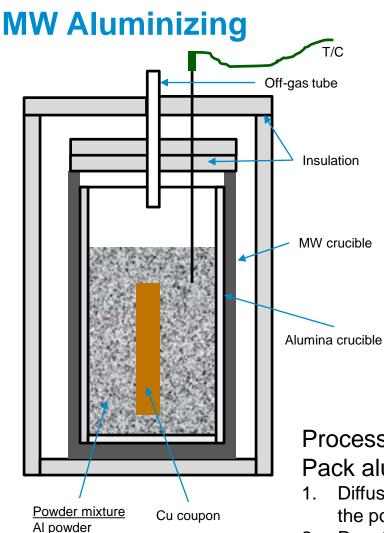
U foil more difficult to roll than U/Mo

Heat Treat Anneals Necessary for desired thickness

New Heat Treat Furnace Installed and Operational

100 μ m foils are now possible.

Physical Vapor Deposition (PVD)


Bell Jar

Magnetron Sputter

Zr Metal Source

 Al_2O_3

NH₄CI

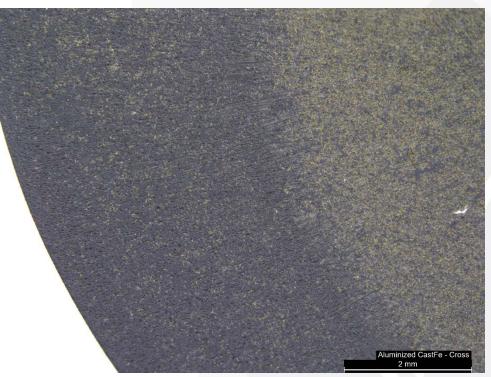
FY18:

- Perform proof-of-concept test with Cu in MW
 - 2 different compositions:
 - 1. 5%AI, 93%AI₂O₃, 2%NH₄CI
 - 2. 10%AI, 88%AI₂O₃, 2% NH₄CI
 - 3. 800~900°C for 1 to 6 hrs
 - Perform optical metallography
 - Thickness & microstructure
 - Micro hardness testing

FY19:

- Perform in MW with DU coupons
- Repeat same tests and evaluations as with Cu

Process*:


Pack aluminizing is a diffusion process

- Diffusion of Al halides (AlCl₃, AlCl₂, AlCl) through the vapor phase in the porous pack medium
- Reaction of Al halide AlCl₂ with the substrate at temperatures <1000°C
- Diffusion of Al in the solid phase to form aluminide coating layer

^{*} M.E. Abd El-Azim, et.al., "Pack Aluminizing of Copper" J. Mater. Sci. Technol., Vol. 13, 1997

Metallography (Cast Iron Aluminum Coating)

Additional Capabilities

- Swaging
- Annealing (Heat Treatment or In-Mold)
- Precision Machining
- Dimensional Inspection (CMM)
- Analytical Chemistry
- Metallography

TRANSPORTATION

- Numerous options exist for near-term U transportation packages including both Type A or B packages.
- Some packages may require minimal license amendments primarily for packing/insert design
- Long-term, efficient sipping options are dependent on foil packing requirements, configuration, & other limitations.

A Few Examples of Potential Transportation Options

Shipping Container	Shipping Container Type	Allowable Loading ⁽¹⁾ (kg ²³⁵ U)	Equivalent Foils ⁽²⁾ (# foils)	Equivalent Slab <i>t</i> (inches)
TN-BGC1	Fissile Type B	7	93	0.93
ES3100	Fissile Type B	17	227	2.27
5X22	Fissile Type B	9	(3)	(3)
NNFD-10	Fissile Type A	0.35	(3)	(3)

- 1. Allowable loading limits will vary depending upon the corresponding package Criticality Safety Index (CSI) and the desired mode of transportation.
- 2. Assumes stacked foils within primary container.
- 3. Package internal usable length will not allow stacking of full length foils.

Questions?